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Vector Lengths 

•Başlangıçta vurgulanması gereken çok önemli bir gerçek, bir 
vektörü diğerine karşı çizmek için vektörlerin aynı sayıda 
öğeye sahip olması gerektiğidir. Aynı sayıda değere sahip 
olmaları koşuluyla, bir sütun vektörü veya bir satır vektörüne 
karşı bir sütun vektörü veya bir satır vektörü çizilebilir. 

•İki boyutlu çizim komutlarında, yatay eksene x ekseni ve 
dikey eksene y ekseni olarak atıfta bulunulacaktır. Bununla 
birlikte, gerçek değişkenler herhangi bir nicelikle 
etiketlenebilir. Yalnızca çizim komutlarında x ve y kullanılır. 
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Command for Linear Array 

•>> x = x1:xstep:x2 
•where x1=beginning point, x2=final point, and 
xstep=step size. Assuming that the final point coincides 
with an integer multiple of xstep, the number of points N 
is  

2 1 1
step

x x
N

x


 
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Alternate Command for Linear Array 

•>> x = linspace(x1, x2, N) 

•where x1=beginning point, x2=final point, and 
N=number of points. The name linspace represents 
“linear spacing”. Again, the number of points N is  

2 1 1
step

x x
N

x


 



Plot komutu ile grafik çizme 

• Plot komutunun genel kullanımı 
• xlabel komutu ile x-ekseninin adlandırılması 
• ylabel komutu ile ekseninin adlandırılması 
• title komutu ile grafiğe isim verilmesi 
• renk, şekil, kalınlık gibi grafiklerin özelliklerinin değiştirilmesi 
• holdon komutu ile tek bir pencerede birden fazla grafik 

çizdirilmesi 
• Grid komutu ile yatay ve dikey bölümlendirme 
• Axis komutu ile eksen ölçeklendirme 
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Example 1. When air resistance can be 
ignored, the velocity (in m/s) of an object 
falling from rest is 

9.8v t

•Use MATLAB to plot the velocity over a time 
interval from 0 to 10 s. 
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Example 1. Continuation. 

•It should be emphasized that this is a simple linear 
equation with a vertical intercept of 0 so we actually 
need only two points to plot the curve. However, our 
purpose is to learn how to use MATLAB for plotting 
and we will utilize far more points than necessary as a 
learning process. 
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Example 1. Continuation. 

•A time step of 0.1 s will be selected. 

  t = 0:0.1:10; 

•Alternately, 

  t = linspace(0,10,101);  

•t(1:5) 

 ans =   0    0.1000    0.2000    0.3000    0.4000 
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Example 1. Continuation.  

•>> v = 9.8*t; 

•This command generates 101 values of v 
corresponding to the 101 values of t. It can be 
plotted by the command 

•>> plot(t, v) 

•The result is a “raw” plot but various labels can be 
added as will be shown on the next slide. 
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Example 1. Continuation.  

• A horizontal label is provided. 
• >> xlabel(‘Time, seconds’) 
• A vertical label is provided. 
• >> ylabel(‘Velocity, meters/second’) 
• A title is provided. 
• >> title(‘Figure 4-3. Velocity of falling  object of 

Example 4-1 with grid.’) 
• A grid is added. 
• >> grid 
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Example 4-2. A force in newtons (N) is 
given below. Plot the function. 

2

1( ) 0.25f t t

• Assume 101-point t vector is in memory. 
• >> f1 = 0.25*t.*t;  or 
• >> f1 = 0.25*t.^2: 
• >> plot(t, f1) 
• >> xlabel(‘Time, seconds’) 
• >> ylabel(‘Force, newtons’) 
• >> title(‘Figure 4-4. Force as a function of time in Example 

4-2.’) 
• >> grid 
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Example 4-3. A force in newtons (N) is 
given below. Plot the function. 

2

2 ( ) 25 0.25f t t 

Assume 101-point t-vector is in memory. 

>> f2 = 25+0.25*t.^2;   

>> plot(t, f2) 

>> xlabel(‘Time, seconds’) 

>> ylabel(‘Force, newtons’) 

>> title(‘Figure 4-6. Second force as initially obtained in Example 4-3.’) 

>> grid 
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Example 4-3. Continuation. 

• Plot is modified by the command 

 

• >> axis([0 10 0 50]) 
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Multiple Plots on Same Graph 

•The two functions f1 and f2 of the previous two 
examples can be plotted on the same graph by the 
command 

•>> plot(t, f1, t, f2) 

•The command gtext(‘label’) allows a label to placed 
on a graph using crosshairs. The resulting functions 
are shown on the next slide. 
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Log-Log Plots 

ky Cx

10 10 10 10log log ( ) log logky Cx C k x  

' ' 'y mx b 
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Example 4-5. Plot the 2nd degree 
function below on a log-log graph. 

2y x

•>> x = logspace(-1, 1, 100); 

•>> y = x.^2; 

•>> loglog(x, y) 

•A grid and additional labeling were provided and 
the curve is shown on the next slide. 
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Bar and Stem Plots 

• Command for a bar plot: 

• >> bar (x, y) 

 

• Command for a stem plot: 

 

• >> stem (x, y) 
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Example 4-6. The text contains the sales in 
thousands of dollars for a small business 
from 1993 through 2002. Construct a bar 
graph. 
•>> year = 1993:2002; 

•>> sales = [ the 10 values in the text]; 

•>> bar(year, sales) 

•The graph with additional labeling is shown on the 
next slide. 
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Example 4-7. Plot the data of the 
previous example using a stem plot. 

•Assume that the variables year and sales are still in 
memory. The command is 

 

•>> stem (year, sales) 

 

•The plot with additional labeling is shown on the next 
slide. 
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Chapter 5 
Common Functions and their Properties 

•The concept of functions is a very basic part of 
mathematics and one that appears in all forms of 
algebra, trigonometry, and calculus. While there are 
hundreds of different types of mathematical functions, 
certain common ones tend to occur quite often in 
applied engineering and scientific applications. In this 
chapter, we will explore some of these most common 
functions and study their behavior.  
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•Now that basic MATLAB matrix operations and 
curve plotting have been covered, much of the work 
that follows will provide coverage of the MATLAB 
commands immediately after introducing the 
mathematical forms. This will be the norm where 
the commands are fairly simple and are best 
introduced after discussing the mathematical form. 
In particular, the need to plot curves of functions 
immediately after introducing the functions will be 
best achieved with MATLAB commands. 
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Functions 

•A function is a relationship between two or more 
variables. At this point in the text, we will consider 
only the variables x and y for a given function. In most 
cases, we will consider that x is the independent 
variable and y is the dependent variable. This does not 
necessarily mean that x causes y in all cases, but it 
suggests that we first assign a value of x and then 
determine the value or values of y. 
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Horizontal and Vertical Axes 

•Normally, x is assigned to the horizontal axis and y is 
assigned to the vertical axis. The general notation 
indicating that y is a function of x will take the form 
y=f(x) and letters other than f may be used when 
there are several functions. Alternately, subscripts 
may be added to different functions to give them 
separate identities. Sometimes, we will use the 
simpler notation y=y(x) to mean the same thing. 
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Single-Valued versus Multi-Valued 

•A single-valued function is one in which a single value 
of x results in a single value of y. A multi-valued 
function is one in which a single value of x results in 
more than one value of y. An example of a single-
valued function is shown in Figure 5-1(a), and a multi-
valued function is shown in Figure 5-1(b). Both appear 
on the next slide. 
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Continuous versus Discontinuous 

The definition of a continuous function is one in which at any value of the 
independent variable, approaching the value from the left results in the 
same dependent value as approaching the value from the right. An 
example of a continuous function is shown in Figure 5-2(a), and a 
function that has one finite discontinuity is shown in Figure 5-2(b). Both 
appear on the next slide. 
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Domain and Range 

•Assume that a function is being evaluated over 
specific limits such as from x1 to x2. This portion of 
the x-axis is called the domain. All values of the 
dependent variable y that are produced in the 
process are called the range. In casual usage, 
engineers and technologists tend to refer to both 
as ranges. 

 



49 

Inverse Functions 

•If we have a function y=f(x), and we can reverse 
the process and solve for x in terms of y, we have 
the inverse function. For the moment, we will 
denote the inverse simply as x=g(y). We will retain 
the original variable names and then consider y as 
the independent variable and x as the dependent 
variable.  
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Even and Odd Functions 

•An even function is one that satisfies 

•f(-x)=f(x) 

•Figures 5-4 and 5-6 are even functions. 

 

•An odd function is one that satisfies 

•f(-x)=-f(x) 

•Figures 5-5 and 5-7 are odd functions. 
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Example 5-1. Determine if the function 
below is single-valued or multi-valued. 

2( ) 1y f x x  

•With x as the independent variable and y as the 
dependent variable, there is only one value of y for a 
given value of x. Hence the function is single-valued. 
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Example 5-2. Is the function of Example 5-1 
even, odd, or neither. 

•Since f(-x)=f(x), the function is even. 

 

2 2( ) ( ) 1 1 ( )f x x x f x      
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•We now consider y as the independent variable and x 
as the dependent variable. 

Example 5-3. Determine the inverse of 
the function of Example 5-1. 

2

2

1

1

1

y x

x y

x y

 

 

  
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Example 5-4. Is the inverse function of 
Example 5-3 single-valued or multi-
valued? 
•Since two values of x result from a given value of y, 
the inverse function is multi-valued. This tells us that 
a function may be single-valued but its inverse may be 
multi-valued or vice-versa. In many applications, only 
the positive square root would be of interest, so if the 
negative square root is rejected, we could interpret 
the result as being single-valued. 



55 

Example 5-5. Is the inverse function of 
Example 5-3 even, odd, or neither? 

( ) 1g y y    

•The inverse function is neither even nor odd. 
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MATLAB Subplot 
•The subplot allows more than one plot to be 
prepared on the same printer page. In fact, Figures 5-1 
and 5-2 were both prepared using that command.The 
syntax for the subplot command is as follows: 
•>> subplot(m, n, k) 
•Integers m and n define the number of rows and 
columns of subplots. The integer k defines the 
particular one based on left to right and top to 
bottom. 
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Example 5-6. Plot the function of Example 
5-1 and the inverse of Example 5-3 using 
subplots. • >> x = linspace(-2, 2, 201); 

• >> y = x.^2-1; 
• >> subplot(2, 1, 1) 
• >> plot(x, y) 
• Additional labeling commands were used. 
• >> subplot(2, 1, 2) 
• >>plot(y, x) 
• Additional labeling commands were used. 
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Power and Polynomial Functions 
n

ny x
0

0 1y x 

1

1y x x 

2

2y x
3

3y x
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y mx b 

•The quantity m is the slope of the line and b is the vertical 
intercept. For m>0, the slope is upward and for m<0, the 
slope is downward. The line crosses the vertical axis at a 
value b. 

Straight-Line Equation 

2 1

2 1

y y
m

x x





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Example 5-7. Write the equation and plot 
the line having a slope of 2 and a vertical 
intercept of -4. 

2 4y x 

•This case is about as simple as any can be since we 
are given the two parameters required in the 
slope/vertical intercept form. The straight-line is 
shown on the next slide. 
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Example 5-8. Write the equation and plot 
the line passing through the points (3, 5) 
and (6, -7). 

2 1

2 1

7 5 12
4

6 3 3

y y
m

x x

   
    

 

4y x b   5 4(3)  or 17b b   

4 17y x  
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Polynomial Functions 

•A polynomial function is one composed of a sum of 
power terms of the form of xn with integer values of 
n and constant factors.  A typical polynomial function 
of degree N can be expressed in the following form: 

1

1 1 0

( )

....N N

N N

y p x

A x A x A x A





    
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Roots of a Polynomial Function 

•A root of a polynomial equation is a value of x such 
that the polynomial is zero when it is evaluated for 
that particular value of x. This means that for any 
root xk of the polynomial p(x) on the previous slide, 
the following equation is satisfied:  

( ) 0kp x 
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Theorem on Roots 

•A polynomial of degree N has exactly N roots. These 
roots may be classified as 
•1. Real roots of first order 
•2. Complex roots of first order 
•3. Real roots of multiple order 
•4. Complex roots of multiple order 
•In this classification scheme, purely imaginary roots 
may be considered as a special case of complex roots. 
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Complex Roots 

•For real polynomial coefficients, any complex roots 
appear in conjugate pairs. Thus, if a+ib is a root, a-
ib will also be a root. The value a-ib is the complex 
conjugate of a+ib. The quantity i is the basis for the 
complex number system and is given by 

1i  
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Factored Form of a Polynomial 

1 2

( )

( )( )....( )N N

y p x

A x x x x x x



   
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MATLAB Evaluation of Polynomial 

•Assume that the vector x has been entered. To illustrate for 
the third degree case, one way to evaluate is shown below. 
 
•>> y =  A3*x.^3 + A2*x.^2 + A1*x + A0 
 
•An easier way will be shown on the next slide. 

1

1 1 0....N N

N Ny A x A x A x A

    
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Easier MATLAB Procedure for Polynomial 
Evaluation 

•Define a row vector C as follows: 

•>> C = [A3 A2 A1 A0]; 

 

•The polynomial will be evaluated at all values of x by 
the command 

 

•>> y = polyval(C, x) 
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Factoring of Polynomials 

•Define a row vector C as follows: 

•>> C = [A3 A2 A1 A0]; 

 

•The roots will be determined by the command 

•>> R =roots(C) 

•The vector R as is a column vector whose values 
are the roots of the polynomial. 
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Forming the Polynomial from the Roots 

•Assume that the roots of a polynomial are formed as 
either a row or a column vector and denoted as R. The 
coefficient matrix C of the polynomial is determined by 

•>> C = poly(R) 

•If the coefficient of the highest degree term is other 
than one, it is necessary to modify C as follows: 

•>> C = AN*C 
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Multiplication of Polynomials 
•Two polynomials can be multiplied together by the use of the conv 
command. The term conv is a contraction of the term convolution 
which has applications in signal processing and in both differential 
and difference equations. To illustrate, assume two 2nd degree 
polynomials. 

2

1 2 1 0( )p x A x A x A  

2

2 2 1 0( )p x B x B x B  

3 1 2( ) ( ) ( )p x p x p x
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Multiplication of Polynomials Continuation 

•Form row vectors for the coefficients. 

•>> C1 = [A2 A1 A0]; 

•>> C2 = [B2 B1 B0]; 

 

•The coefficient matrix of the product polynomial is 
obtained by the command that follows. 

•C3 = conv(C1, C2) 



80 

Example 5-9. Use MATLAB to determine the 
roots of 

23 12 39y x x  

•>> C = [3 12 39]; 

•>> R = roots(C) 

•R = 

•  -2.0000 + 3.0000i 

•  -2.0000 - 3.0000i  
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Example 5-10. Reconstruct the 
coefficients of the polynomial from the 
roots of the preceding example. 
•>> C1 = 3*poly(R) 

•C1 = 

•3    12    39 

 

•We could use the polyval command to evaluate 
the polynomial if desired. 
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Example 5-11. Determine the roots of 
the 5th degree polynomial below. 

5 4 3 23.2361 5.2361 5.2361 3.2361 1y x x x x x     

•>> C=[1 3.2361 5.2361 5.2361 3.2361 1]; 

>> R = roots(C) 

R = 

  -0.3090 + 0.9511i 

  -0.3090 - 0.9511i 

  -1.0000           

  -0.8090 + 0.5877i 

  -0.8090 - 0.5877i 
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Example 5-12. Reconstruct the 
polynomial of Example 5-11 from the 
roots. •Assume that the 5 roots are still in memory as a 

vector. 

 

•>> C1 = poly(R) 

•C1 = 

• 1.0000    3.2361    5.2361    5.2361    3.2361    
1.0000 
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Example 5-13. Evaluate the 5th degree 
polynomial for x = 0, 0.5, 1, and 2. 
•Assume that C is still in memory. 

•>> x = [0 0.5 1 2]; 

 

•>> y = polyval(C, x) 

•y = 

•    1.0000    4.8151   18.9444  154.0830 
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Exponential Function to the Base e 
xy e

•The basic exponential function arises in a large 
number of scientific and engineering problems. 
The "purest" form of the exponential is as a power 
of the mathematical constant e=2.718 to four 
significant digits. The form of the function for both 
positive and negative x is shown on the next slide. 
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Decaying Exponential Function 

•The most common form of the exponential function in practical 
engineering problems is the decaying or damped exponential function. 
Many applications involve time as the independent variable and the 
forms are shown below and on the next slide. 

/ty e 
ty e 

1/ 
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MATLAB Exponential Forms 

•Assume that a vector x is in memory. MATLAB uses 
exp for e and the command to generate y is 

•>> y = exp(x) 

•If a base other than e is desired, the exponentiation 
operation is used. For example, if the base is 10, the 
command is 

•>> y = 10.^x 
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Example 5-14. Consider the exponential 
function shown below. 

/0.01 100t ty e e  

•Determine (a) the time constant and (b) the 
damping constant. (c). Based on the rule-of-thumb 
provided in the text, about how long would it take 
to reach a practical level of zero? 
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Example 5-14. Continuation. 

0.01 s 10 ms  

-11 1
100 s

0.01



  

5 5 10 ms =50 msT   
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Example 5-15. A force f begins with 20 N and 
decays exponentially with a time constant of 
5 s. Write the equation. 

/5 0.220 20t tf e e  
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Example 5-16. Generate the two curves 
of Figure 5-11 and plot them. 
•One is the exponential function and the other is the 
straight-line y1 = 1 - x. 
•>> x = linspace(0, 5, 501); 
•>> y = exp(-x); 
•>> x1 = linspace(0, 1, 11); 
•>> y1 = 1-x1; 
•>> plot(x, y, x1, y1) 
•Other routine labeling was provided on Figure 5-11.  
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Logarithmic Function 

•The logarithmic function is the inverse of the 
exponential function. However, because it arises in 
many applications, it will be represented in the usual 
form with x as the independent variable and y as the 
dependent variable. The mathematical form is 
provided below and a curve is shown on the next slide. 

lny x
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Logarithms to Other Bases 
•In general, the logarithm to a base a other than e is determined by the first 
equation below. The base 2 and the base 10 are also considered. 

ln
log

ln
a

x
x

a


2

ln
log 1.4427ln

ln 2

x
x x 

10

ln ln
log 0.4343ln

ln10 2.3026

x x
x x  
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MATLAB Logarithmic Commands 

•The logarithm to the base e in MATLAB is 

•>> y = log(x) 

•This could be confusing since some math books use 
log(x) to mean to the base 10. 

 

•The logarithm to the base 10 in MATLAB is 

•>> y = log10(x) 
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Example 5-17. Some definitions are provided 
below. 

 absolute power ratio
ref

P
G

P
 

•Use MATLAB to develop a conversion curve in 
which G varies from 0.01 to 100. Use a semi-log 
plot with G on the horizontal logarithmic scale and 
GdB on the vertical linear scale. 

dB 1010logG G
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Example 5-17. Continuation. 
•The command to generate G on a logarithmic scale from 0.01 
to 100 is 
•>> G = logspace(-2, 2, 200); 
•The decibel gain is generated by 
•>> GdB = 10*log10(G); 
•A logarithmic x scale and a linear y scale are generated by the 
command 
•>> semilogx(G, GdB) 
•A grid and additional labeling are provided and the curve is 
shown on the next slide. 
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Example 5-18. Plot the absolute gain 
versus the decibel gain from Example 5-
17. 
•We could solve for G in terms of GdB, but that is 
unnecessary since we have both G and GdB in 
memory. We simply reverse the order of the variables 
and change semilogx to semilogy. The command is 

•>> semilogy(GdB, G) 

•The plot with additional labeling is shown on the next 
slide. 



102 



103 

Example 5-19. Use MATLAB to plot the 
gaussian function shown below over the 
domain from -3 to 3. 

2 / 21

2

xy e




•>> a = 1/(sqrt(2*pi)); 
•>> x = linspace(-3,3,301); 
•>> y = a*exp(-0.5*x.^2); 
•>> plot(x, y) 
•With additional labeling, the curve is shown on the next 
slide.  
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Trigonometric Functions 
•There are six basic trigonometric functions: (1) sine, (2) 
cosine, (3) tangent, (4) cotangent, (5) secant, and (6) 
cosecant. However, the first three tend to occur more 
often in practical applications than the latter three. 
Moreover, the latter three can be expressed as 
reciprocals of the first three (not in the order listed). 
Therefore, we will focus on the first three, but the 
definitions of the latter three will be provided for 
reference purposes. 
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Angle Measurement 
•The most basic mathematical unit for an angle is the radian (rad). It 
does have a mathematical basis for its form and does arise as a 
natural process. One complete revolution for a circle corresponds to 
2 radians. To convert between radians and degrees, the following 
formulas can be used: 

180
Angle (degrees) Angle (radians)


 

Angle (radians) Angle (degrees)
180


 



107 

Figure 5-16. Right-triangle used to define 
trigonometric functions. 

x

b

h

r
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Trigonometric Definitions 

sin
h

x
r



cos
b

x
r



tan
h

x
b


1

cot
tan

b
x

h x
 

1
sec

cos

r
x

b x
 

1
csc

sin

r
x

h x
 
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Sine Function 

•The form of the sine function over the domain from 0 
to 2 is shown on the next slide.The function is 
periodic, meaning that it repeats the pattern shown 
for both positive and negative x. The domain shown 
constitutes one cycle of the periodic function and the 
period on an angular basis is 2 radians.  

 

•The sine function is an odd function. 
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Cosine Function 
•The form of the cosine function over the domain 
from 0 to 2 is shown on the next slide. As in the case 
of the sine function, the cosine function is periodic 
with a period of 2 radians on an angular basis. 

 

•The cosine function is an even function. 
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Tangent Function 
•The form of the tangent function over the domain 
from 0 to 2 is shown on the next slide.This function is 
periodic, but there are two cycles shown in the given 
domain. Hence, the tangent function is periodic with a 
period of  radians on an angular basis. 

•The tangent function is an odd function. Moreover, it 
has infinite discontinuities at odd integer multiples of 
/2. 
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MATLAB Trigonometric Functions 
• The 6 MATLAB commands are 

• >> y = sin(x) 

• >> y = cos(x) 

• >> y = tan(x) 

• >> y = cot(x) 

• >> y = sec(x) 

• >> y = csc(x) 
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Sinusoidal Time Functions 

sinsy B t

sine function and  cosine function

 or  amplitude or peak value of  function

 angular frequency or angular velocity 

of function in radians/second (rad/s)

time in seconds (s)

s cy y

B A

t



 







coscy A t
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Period and Frequency 

2 f 

•For either the sine or cosine, the quantity  is the number of radians 
per second that the function undergoes in the argument. This 
quantity is called the angular velocity in mechanics and is called the 
angular frequency in electricity. It is related to the cyclic frequency by 
the relationship 

1/T f
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Combining Sine and Cosine Functions at 
the Same Frequency 

sin cos

sin( ) cos( )

y B t A t

C t C t

 

   

 

   

•The sum of a sine and a cosine function at the same frequency may 
be expressed as either a sine or a cosine function with an angle. The 
angle may be determined from the phase diagram on the next slide. 

2 2C A B 
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cos

cos

sin sin
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Example 5-20. Use MATLAB to plot the 
function below over two cycles. 

o20sin( 30 )

20sin( / 6)

y t

t



 

 

 

x = linspace(0, 2, 201); 
y = 20*sin(2*pi*x+pi/6); 
plot(x, y) 
 
The plot is shown on the next slide. 

2
2

t
t x

T


  
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